
www.manaraa.com

Programming World Wide Web Pages in Scheme

Kurt Nørmark

Department of Computer Science

Aalborg University

Fredrik Bajers Vej 7

DK-9220 Aalborg

Denmark

Email: normark@cs.auc.dk

Abstract

In this paper we will argue that pages on the

World Wide Web can be made directly as pro-

grams in a functional programming language in-

stead of through HTML or an HTML-based au-

thoring tool. We use the Scheme programming

language from the Lisp family for WWW page

production. It is concluded that a Lisp language

is an attractive direct vehicle for authoring of In-

ternet material in the sense that the source of a

WWW document becomes a Lisp program. Ab-

straction from details in the underlying markup

language constitutes the main advantage in our

approach. This is consistent with the expected

advantage of introducing XML as a successor of

HTML. In addition we find it useful to have the

power of a high quality programming language

available for automation of routine tasks during

the authoring process.

1 Introduction

Today HTML [3] is the primary markup language
which is used to present information on the World
Wide Web (WWW).

HTML is a simple, non-extensible language in
the SGML family. SGML is a meta language ori-
ented towards definition of markup languages such
as HTML, XML, and domain specific markup lan-
guages. XML [2] is an extensible markup language
in which new markup elements can be defined. A

new document type can be introduced by writing a
grammar for it. The presentation of an XML doc-
ument in a browser requires a presentation scheme
(known as a style sheet). As of this writing, XML
has not had much practical impact on the author-
ing of WWW material.

In this paper we will introduce and discuss a
Lisp Abstracted Markup Language called LAML
in which the markup elements are represented as
functions in the Scheme programming language
[17]1. Using the LAML approach, the source of
a WWW page is a Scheme program. By execut-
ing the Scheme program the LAML document is
transformed to a lower level HTML equivalent.

There are many different ways to make collec-
tions of WWW pages. Many authors use a special-
ized “home page” editor, which often is a structure
editor [18] for HTML with a friendly, WYSIWYG
user interface. Others use standard text process-
ing systems, such as Word, from which documents
can be exported to HTML. Authors who are used
to traditional text formatting systems (like TeX
[13] or LaTeX [14]) often write HTML documents
in a plain text editor. Translation systems, typi-
cally called X2html for a given kind of source X,
are also around.

Text formatting languages like TeX and La-
TeX support language extensibility in terms of so-

1The most up to date version of the Scheme report is de-
fined in the Revised5 Report on the Algorithmic Language

Scheme which can be found in The Internet Scheme Repos-
itory [19].

www.manaraa.com

called macro facilities. However, compared with
the abstraction mechanisms found in full-fledged
programming languages, these macro languages
are primitive and often poorly designed. It would
not be difficult to create similar ad hoc facilities
for HTML, but it would hardly be desirable. In
that respect the XML approach is a better alter-
native because it follows established SGML tradi-
tions.

In this paper we will argue that it is possible to
use a programming language for markup purposes
instead of using HTML or XML directly. Follow-
ing our approach we mirror HTML in a program-
ming language, such that the full expressibility
of HTML becomes available from the program-
ming language. We can hereby use the abstrac-
tion mechanisms of the programming language to
provide for extensibility in the markup language.
More specifically we can, by means of abstrac-
tions applied on HTML details, create layers of
specialized notation well-suited for authoring of
documents in particular domains. This is also the
main goal of XML. However, by using a program-
ming language based approach, some of the future
advantages of XML can be utilized right away, in-
stead of waiting for XML technologies to mature.
When XML becomes widely available our efforts
will not be waisted, because of the possibility to
translate relatively easy between our proposed no-
tations and XML.

The power of abstraction is the key benefit of
using a full programming language for authoring
of WWW material. However, there is also an-
other reason. When we are dealing with the cre-
ation of complicated material, problem solving of-
ten involve some kind of programming. Trivial
routine work (such as making trivial transforma-
tions on a list of text items, or inserting material
from external files) can be eliminated by program-
ming a solution instead of forcing the author to
carry out repetitive, manual, and time consum-
ing step-by-step solutions. Having the full power
of a high quality programming language available
“anywhere” and “anytime” is found to be a major
advantage in the practical authoring process. This
is not an observation limited to the authoring of

WWW pages. The observation holds in general
in any professional work situation where the com-
puter is the primary tool.

In section 2 we will discuss which programming
paradigms and which programming languages can
be used in a programmatic approach to WWW
authoring. Following that, in section 3, we give a
concrete example in order to illustrate the LAML
approach. In section 4 and 5 we discuss the two
central issues, abstraction and automation. Fi-
nally in section 6 we give a brief overview of the
LAML software package.

2 The choice of programming

paradigm and language

We will now turn to the question of which pro-
gramming paradigm and which programming lan-
guage to use for WWW programming.

In this discussion it is useful to distinguish be-
tween creation of static WWW pages and dynamic
WWW pages. In this context, a dynamic WWW
page is produced by a program (using the CGI in-
terface [7], for instance) instead of being fetched
from a server. In other words, a dynamic WWW
page is calculated at access time, not just ex-
tracted from a disk. The starting point of the cal-
culation is a set of input, typically provided by en-
tering data into some input form. The output is a
WWW page which can be shown in a browser. As
it appears, the functional programming paradigm
fits perfectly in this set up: Based on some input

parameters an expression is evaluated, and the re-

sult is a text string which represents the output in

HTML.
Even though a static WWW page is stored on

a server, it may often be beneficial to generate the
page from a higher level description. The gener-
ation is not supposed to take place at document
access time, but at an earlier point in time (closer
to document creation time). As already pointed
out, the high level description may use abstracted
notation in terms of descriptive markup [5] devel-
oped to a specific domain of documents. The func-
tional programming paradigm fits well also when
we are interested in generated WWW pages: By

www.manaraa.com

means of a function the high level document de-

scription is transformed to low level HTML repre-

sentation of the document.

Today, the imperative programming paradigm
is undoubtedly dominating in the areas where
WWW pages are produced programmatically. As
we have argued above, this is unfortunate. The
concept of expressions is much more useful than
the concept of commands when we model and pro-
cess a text with descriptive markup. The nesting
of markup elements is, in a natural way modelled
by nested activations of functions in an expression.
In the imperative paradigm, procedural abstrac-
tions cannot be combined in the same way. Using
the imperative paradigm it is easy to program pro-
cedures that emit text with markup (by means of
write statements). It is also possible for one such
procedure to call another similar procedure. We
do, however, not achieve an immediate and natu-
ral composition of programmed abstraction in the
imperative paradigm, because procedure calls can-
not be nested in the same way as function calls.
This makes imperative programming less attrac-
tive for our purposes.

Like functional programming, the object-
oriented programming paradigm is also attractive
for representation of documents with descriptive
markup. An object representation is, in general,
more useful and versatile than an “expressional
representation”. Each kind of tag can be repre-
sented as a class, and each tagged element in a
document will hereby be represented by an ob-
ject. The power of specialization (inheritance) can
be used conveniently to classify the tags, and the
nested structure of a document can be modelled
by aggregation. Functionality, such as transfor-
mation from high level to low level representa-
tions, can in a natural way be implemented as
methods in the tag classes. The Document Object
Model (DOM) [1], as proposed by the World Wide
Web Consortium, is an example of an object-
oriented, programmatic representation of WWW
documents on the client side (as used in Internet
browsers).

We will now turn to a discussion of particu-
lar programming language properties, which are

important for programmatic authoring of WWW
pages.

The syntactical properties of the programming
language are important. We go for a solution
where the source description of WWW documents
follows the rules of a programming language. In
other words, the WWW document sources are
programs. If we use the programming language
in such a way it is of primary importance that
the language offers flexible syntactical solutions.
Many programming languages fall short in that
respect. Who can imagine Pascal, C, or Java used
directly for authoring of textual documents? We
are looking for a programming language with only
few syntactical constraints. In addition, we look
for languages with powerful abstraction mecha-
nisms, including a mechanism for syntactic ab-
straction (in order to provide for ultimative lan-
guage extensibility). Finally, we think that a lan-
guage with an easy-to-parse syntax, without am-
biguities at the syntactic level (requiring associa-
tion and precedence rules) provides for the best
solution.

If we go for a pure and clean functional pro-
gramming language like Haskell [10; 9] some kinds
of problem solving which involve the “imperative
surround” (such as file output) becomes compli-
cated. Therefore we are better off if we chose a
functional programming language which also sup-
ports imperative mechanisms in terms of assign-
ment, mutation of data structures, and not least
plain file IO. In our opinion, a 90% functional solu-
tion, with 10% imperative “escape programming”
at well defined and isolated program locations, is
often an attractive alternative to a 100% impera-
tive solution (or a solution where the imperative
and functional paradigm are mixed arbitrarily).

Given these observations, a language in the Lisp
family is an obvious choice. More specific, we
chose the programming language Scheme which
is a relatively small, but powerful Lisp language.
Scheme is best regarded as a mixed paradigm pro-
gramming language, with strong support of classic
functional programming and plain imperative pro-
gramming. However, Scheme lacks many of the
hallmarks of contemporary functional program-

www.manaraa.com

(html

(string-append

(head

(title "Programming World Wide Web Pages in Scheme"))

(body

(string-append

(h1 "Programming World Wide Web Pages in Scheme")

(h2 (string-append "Kurt Normark" (br) "Aalborg University")) (p)

(h2 "Abstract")

"In this paper we will argue that pages on the World Wide Web can be

made directly as programs in a functional programming language, instead

of through HTML or an HTML-based authoring tool..."

(h2 "Introduction")

"HTML is widely known as the markup language used to represent information

on the World Wide Web (WWW)...")

’bgcolor (rgb-color 255 255 255)

’text (rgb-color 0 0 0)

’link (rgb-color 0 0 255)

’vlink (rgb-color 255 0 255))))

Figure 1: An example of a WWW page programmed in Scheme using LAML markup.

ming languages, most notably lazy evaluation and
pattern matching. Syntactically, Scheme uses
parenthesized prefix notation, as all languages in
the Lisp family. It turns out that the angle bracket
idea of HTML/SGML and the parenthesis idea of
Lisp are reasonably close to each other to provide
for easy translations between the two of them.

Lisp and Scheme have been used by others for
Internet programming purposes. Hickey, Norvig,
and Anderson [8] describe a Java Implementation
of Scheme (SILK) which allows for programming
of applets in Scheme. In the SILK paper other
similar works using Scheme are described.

3 Examples of LAML docu-

ments

As mentioned in the introduction we have made
a mirror of all the HTML tags in Scheme. The
HTML mirror constitutes the bottom layer of
LAML. In this and the following section we will
illustrate the LAML approach by concrete exam-
ples.

Each HTML or XML tag application, such as

<tag a1=v1 a2=v2> some text </tag>

where ai=vi is an attribute value pair, corre-
sponds to the Scheme function call

(tag "some text" ’a1 v1 ’a2 v2)

The parameter profile of this tag function (in
which there is a single textual parameter and a
trailing property list of attribute value pairs) is
representative of our current HTML mirror in
Scheme. As discussed in [16] other parameter pro-
files may be possible or even preferable.

Due to the uniform nature of HTML it is easy
to generate a set of HTML mirror functions in
Scheme from a list of HTML single tags and dou-
ble tags. Given a list of double tags such as

(list ’a ’em ’ol ’table ’ul ...)

we make Scheme functions for the a tag, the em

tag, and so on. In addition, these functions are
bound to the same name as the tag. Thus, we get
an a function, an em function, etc. Each Scheme
function generates a text string containing the

www.manaraa.com

<html>

<head>

<title>Programming World Wide Web Pages in Scheme</title>

</head>

<body bgcolor = "#ffffff" text = "#000000" link = "#0000ff" vlink = "#ff00ff">

<h1>

Programming World Wide Web Pages in Scheme

</h1>

<h2> Kurt Normark
Aalborg University </h2> <p>

<h2>Abstract</h2>

In this paper we will argue that pages on the World Wide Web can be

made directly as programs in a functional programming language, instead

of through HTML or an HTML-based authoring tool...

<h2>Introduction</h2>

HTML is widely known as the markup language used to represent information

on the World Wide Web (WWW)...

</body>

</html>

Figure 2: The HTML counterpart of figure 1.

similar HTML start and end tags. These are the
bottom layer primitives of LAML.

Figure 1 shows an example of a simple WWW
page programmed in Scheme.2 The page corre-
sponds to the HTML page shown in figure 2. This
HTML page is also the output from the Scheme
program in figure 1 (apart from the indentation,
which has been made manually for figure 2).

There are a couple of relevant observations
about the LAML source in correspondence to
the HTML source. First, each text contribution
in the LAML document must be represented as
a string constant, such as "Programming World

Wide Web Pages in Scheme". Thus, in figure
1 we have a number of relatively small text
strings which are passed as actual parameter to
the Scheme functions. In the SGML family of
markup languages the tags are inserted into an
implicit string, which represents the whole docu-
ment. This string is semi-constant in the sense
that the HTML tags are evaluated and interpre-

2Using the LAML libraries as available from [15], the
function names which correspond to HTML tags must all be
prefixed with html: in order to avoid collision with existing
Scheme names.

tated by the Internet browser. A semi-constant
string corresponds to a quasi quoted list in Lisp
as supported by the backquote facility, found in
many Lisp Systems (for instance in Common Lisp
[11] and Scheme).

In order to alleviate this string passing prob-
lem in Scheme we might want to support semi-
constant strings with evaluated substrings. As an
example consider the semi-constant string

"A text with a

(a "link" ’href "subsection/sec1.html")

to a (b "subsection")

"

instead of the string concatenation

(string-append

"A text with a "

(a "link" ’href "subsection/sec1.html")

" to a " (b "subsection"))

This corresponds to the HTML expression

A text with a

link

to a subsection

which is rendered as “A text with a link to a sub-
section” in most browsers.

www.manaraa.com

Semi-constant strings with evaluation of paren-
thesized sub-forms is difficult to implement in
Scheme, at least with reasonable notational ele-
gance. First notice that the semi-constant string
above in reality is a sequence of subexpressions:
The string "A text with a (a ", the symbol
link, the string " ’href ", etc. As such the semi-
constant string shown above does not make sense
in Scheme. The underlying problem is that the
string quote character both serves as string-begin
and string-end. Without different characters for
string-begin and string-end it is almost impossi-
ble to embed strings into other strings in such a
way that the Lisp reader can parse them without
ambiguities.

As a consequence of these observations we stick
to explicit concatenation of strings. Some of the
strings are constant, and others are stem from
evaluation of LAML functions.

Compared to SGML-like markup, such a
Scheme source cause aesthetic problems when
reading. However, with respect to writing the ex-
pressions it is possible to find a good solution. The
observation is here that the step from

"A string with a link to a subsection"

to

(string-append

"A string with a link to a "

(b "subsection"))

and further on to

(string-append

"A string with a "

(a "link" ’href "subsection/sec1.html")

" to a " (b "subsection"))

can be carried out by roughly two edit-
ing commands on the substrings "link" and
"subsection". These commands embed the se-
lected strings into Scheme forms, and they han-
dle the splitting of the string into substrings to-
gether with insertion of the outer string concate-
nation form. We support such an editing com-
mand called embed via the LAML support package
in the Emacs text editor.

It is important to notice that our end goal is not
the Scheme expression in figure 1. If that was the

case only little has been gained, and as we have
seen above, a number of problems have been intro-
duced. The Scheme form in figure 1 can, however,
easily be abstracted to a higher level than HTML
allows. Using Scheme as our basis, we will in the
next section illustrate that it is easy to introduce
Scheme functions which correspond to specialized
XML-like tags. In our simple example from above
the tags are oriented towards describing the struc-
ture of a scientific paper.

4 Higher level markup and ab-

straction

Figure 3 shows an abstracted version of the doc-
ument in figure 1. As can be seen, we have intro-
duced a few abstractions, such as article which
is described in terms of a title, an author, an af-
filiation, an abstract, and a body. Further on,
an article body consist of a number of sections.
Article, article-title, article-author, and
the other abstractions are programmed as Scheme
functions. In the simple case, they just implement
a translation to the details found in figure 1. In
a more realistic case the functions would imple-
ment a more elaborate transformation (including,
for instance, a table of contents and other stan-
dard article stuff). Figure 4 shows a simple im-
plementation of the functions.

Both the HTML level description (in figure 1
and 2) and the abstract description (in figure 3)
use descriptive markup. However, the abstracted
description in figure 3 does not commit itself to
any particular presentation details, which at least
to some degree is the case in the HTML descrip-
tions. It is, for instance, up to the implementor of
the functions in figure 4 to decide on the article
layout. In other words, the implementation of the
abstraction is in control of the article style, and
the source file itself contains a very clean, struc-
tural representation of the constituents of an arti-
cle, without unnecessary details. If we at a later
point in time want another layout we can achieve
this by reimplementing just a few functions, and
leave the source document unchanged. This idea
is, as already pointed out in the introduction, also

www.manaraa.com

(article

(article-title "Programming World Wide Web Pages in Scheme")

(article-author "Kurt Normark")

(article-affiliation "Aalborg University")

(article-abstract

"In this paper we will argue that pages on the World Wide Web can be

made directly as programs in a functional programming language, instead

of through HTML or an HTML-based authoring tool..."

)

(article-body

(section 1 "Introduction"

"HTML is widely known as the markup language used to represent information

on the World Wide Web (WWW)...")

"..."))

Figure 3: The document from figure 1 with high level LAML markup.

the main asset of XML. However, XML relies on
a document style to be interpreted at the “client
side”, in the browser. We go for a much earlier
interpretation (generation) at the “server side”,
prior to document access.

Adjustment of the presentation style (such as
font, color, and alignment) can be done by means
of adjustment of HTML details in the functions
which implement the high level LAML markup.
Alternatively, the presentation style can be con-
trolled by means of CSS (Cascading Style Sheet)
[4] which is a language separate from HTML that
controls a variety of style elements. We are cur-
rently investigating an integration of HTML and
CSS into a common linguistic Scheme framework.
In such a framework both HTML details and style
details can be controlled by means of expressions
in Scheme.

5 Automation of routine tasks

When we are dealing with authoring of a com-
plex network of hypertext pages there are many
routine tasks that can be automated by means of
programmed solutions. When the markup tags
are mirrored in a programming language, the full
power of the programming language is available to
help the author solve these routine tasks.

To be concrete, we will discuss a typical prob-
lem which often appears when we are making com-

(define (article ttl autr aff abstr bd)

(html

(string-append

(head

(title ttl))

(body

(string-append

(h1 ttl)

(h2 (string-append autr (br) aff))

abstr

bd)))))

(define (article-title ttl) ttl)

(define (article-author autr) autr)

(define (article-affiliation affl) affl)

(define (article-abstract abstr)

(string-append

(h2 "Abstract") abstr))

(define (article-body . bd)

(apply string-append bd))

(define (section n header bd)

(string-append

(h2 (string-append (as-string n) " " header))

bd))

Figure 4: A simple implementation of the Scheme

functions used in figure 3.

plex WWW pages. The example deals with in-
clusion of external textual material, such as quo-
tations from external files or excerpts from com-

www.manaraa.com

puter programs. The manual solution is to copy
and paste the external material into the WWW
pages. During the authoring process, we typically
need to make many such copies, for instance when
the quoted source has been changed. In an auto-
mated solution, the copying and insertion is pro-
grammed such that the external material is taken
directly from the source when the LAML docu-
ment is processed in order to generate the HTML
representation of the material. The steps in this
process can be automated by a function which ex-
tracts a specified substring from a text file

(read-text-file-between-marks

file-path

mark)

If we want to change the font or color of selected
substrings in the extraction, this can be done with
the combined form

(colorize-substrings

(read-text-file-between-marks

file-path

mark)

font-and-color-specification)

Both read-text-file-between-marks and col-

orize-substrings are existing functions in the
LAML libraries.

It may be argued that the solution to the prob-
lem exemplified above should be provided by a
rich and powerful authoring environment instead
of asking the author to program his or her own
solution. If the authoring environment provides a
pre-programmed facility it is of course the most
ideal solution. The problem is, however, that the
amount of routine tasks showing up in the future
is infinite, meaning that the solutions cannot all
be programmed into a fixed tool. Therefore we
conclude that automation of routine tasks via pro-
gramming capabilities in the markup language is
very attractive in a professional authoring envi-
ronment. The LAML approach makes the Scheme
programming language available to the author at
any place in the document and at any time in the
authoring process.

6 The LAML software package

Besides the mirror of HTML in Scheme we have
implemented a number of useful libraries, docu-
ment styles, and tools. Taken together, we refer
to these as the LAML software package. The li-
braries and some of the tools are available as free
software from the LAML home page on the Inter-
net [15]. Here we will give a brief overview of the
most interesting pieces of the LAML software.

Our own starting point was creation of CGI pro-
grams in Scheme, mainly as a reaction against
the cryptic coding style found in many imperative
CGI programs in Perl. It turns out that it is real-
istic and without notable delay to start a Scheme
system, load some libraries, and run a Scheme pro-
gram as the response to a CGI request. We sup-
port a CGI library, which in a simple way helps
the programmer utilize the Common Gateway In-
terface (CGI) from Scheme.

Our HTML library supports a useful working
repertoire of Scheme functions, which mirror a
relatively arbitrary subset of HTML in the pro-
gramming language. In particular, the HTML li-
brary contains a number of table functions which
map list structures in Scheme to tables in HTML.
These functions make it easy and convenient to
work with HTML tables from Scheme. It became
clear, however, that we needed a better and more
complete support of HTML in Scheme. As a con-
sequence, we also support a more low-level mir-
roring of HTML in Scheme. Based on a list of
HTML tags we are able to generate the corre-
sponding Scheme functions automatically. Given
these functions, we have established a basis which
allows us to construct any HTML document en-
tirely in Scheme. People who want to support
particular variants or versions of HTML can eas-
ily generate their own functions via a tool in the
LAML software package.

In many contexts it is useful to be able to deal
with time. We have implemented a relatively com-
plete support of time in Scheme represented as the
number of seconds elapsed since January 1, 1970.
Basically, we can calculate back and forth be-
tween this representation and conventional dates

www.manaraa.com

and times. On top of the time library we have
made a WEB calendar, which can produce arbi-
trary calendars after 1970. Using the table func-
tions mentioned above we are able to present con-
ventional calendars covering at least half a year on
most screens. It is possible to feed appointments
into the calendars via a CGI interface programmed
in Scheme.

A number of other libraries exist, such as a li-
brary supporting hexadecimal color encoding (as
required by HTML) and a library which allows
us to read and write text strings from and to text
files. We also support selective reading of files, and
superimposing of colors and fonts on text strings
(as exemplified in the previous section).

The LENO lecture note system is the most sub-
stantial LAML document style written to date.
In LENO it is possible to make annotated slides,
which are organized in a number of lectures. Be-
sides overviews and indexes we support three dif-
ferent views on the material: A conventional slide
view which can be presented from an Internet
brower in an auditorium, annotated slides, and a
holistic presentation of a lecture in which all the
information is aggregated into a single page. The
slides and the annotations are linked automati-
cally in a natural way. Besides these links, it is
of course possible to link to any resource on the
Internet. The availability of such well-organized,
interlinked material turns out to be of great value
in a lecturing situation. Because the material is
transformed to pure HTML it is available from
any browser, independent of special plugins.

The LAML software is documented by means
of a tool, which extract certain comments from a
Scheme programs and present these using a man-
ual document style, much like the Javadoc tool [6]

in the Java JDK toolset. Using this tool it is easy
to produce up-to-date documentation of the more
than 300 external functions in the LAML Scheme
libraries.

Finally, we are working on a practical liter-
ate programming [12] system based on the LAML
software packages. Using this system it is possi-
ble to produce internal documentation of Scheme
programs as it is known from the literate program-

ming WEB systems pioneered by Knuth. We call
our variant of literate programming for elucidative
programming because it emphasizes the descrip-
tion of potentially complicated internal program
details by means of explanation. The Scheme Elu-
cidator presents program and documentation in
two vertical HTML frames with heavy linking in
between the two of them.

7 Concluding remarks

In this paper we have introduced a novel appli-
cation of the Scheme programming language. It
has been demonstrated that a WWW page can be
authored as a Scheme program. The Scheme pro-
gram makes up the high-level document source,
which by means of program execution is translated
to HTML. The availability of high-quality abstrac-
tion mechanisms is the main asset of the LAML
approach. The main drawback is the splitting of a
document into many relatively small strings which
are passed as parameters to Scheme functions. As
we have seen, this causes some problems when
reading an LAML source file, but not necessar-
ily problems when we write the document in an
advanced editor. Using the LAML approach we
are approximating the potential of the forthcom-
ing XML technology, but on a much more sim-
ple basis which can be used today. In addition,
the possibility of automating routine work via in-
tegrated, programmed solutions turns out to be
very useful.

Much of the LAML software is available as
free software from the LAML home page on
http://www.cs.auc.dk/∼normark/laml/.

An accompanying paper called Using Lisp as

a Markup Language - The LAML approach [16]

describes our work with LAML at a more Lisp
specific level.

References

[1] World Wide Web Consortium. Document object
model (dom) level 1 specification, October 1998.
http://www.w3.org/TR/REC-DOM-Level-1/.

www.manaraa.com

[2] World Wide Web Consortium. Extensible
markup language (xml) 1.0, February 1998.
http://www.w3.org/TR/REC-xml.

[3] World Wide Web Consortium. HTML 4.0 spec-
ification, April 1998. http://www.w3.org/TR/-
REC-html40/.

[4] World Wide Web Consortium. Cascading
style sheets, level 1, January 1999. http://-
www.w3.org/TR/REC-CSS1.

[5] James H. Coombs, Allen H. Renear, and Steven J.
DeRose. Markup systems and the future of schol-
arly text processing. Communications of the
ACM, 30(11):933–947, November 1987.

[6] Lisa Friendly. The design of distributed hyper-
linked programming documentation. In Sylvain
Frass, Franca Garzotto, Toms Isakowitz, Jocelyne
Nanard, and Marc Nanard, editors, Proceedings of
the International Workshop on Hypermedia De-
sign (IWHD’95), Montpellier, France, 1995.

[7] Shishir Gundavaram. CGI Programming on the
World Wide Web. O’Reilly and Associates, Inc.,
1996.

[8] Timothy J. Hickey, Peter Norvig, and Ken-
neth R. Anderson. Lisp - a language for in-
ternet scripting and programming. In Pro-
ceedings of the lisp user group meeting. Franz
Inc., November 1998. http://www.franz.com/-
elugm99/conference/past.html.

[9] Paul Hudak and Joseph H. Fasel. A gentle intro-
duction to haskell. ACM Sigplan Notices, 27(5),
May 1992.

[10] Simon Peyton Jones and John Hughes (editors).
Haskell 98: A non-strict, purely functional lan-
guage, February 1999. http://haskell.systemsz.-
cs.yale.edu/onlinereport/.

[11] Guy L. Steele Jr. Common Lisp, the language,
2nd Edition. Digital Press, 1990.

[12] Donald E. Knuth. Literate programming. The
Computer Journal, May 1984.

[13] Donald E. Knuth. The Texbook. Addison-Wesley
Publishing Company, 1984.

[14] Leslie Lamport. Latex user’s guide and reference
manual. Addison-Wesley Publishing Company,
1986.

[15] Kurt Nørmark. The LAML homepage. http:-
//www.cs.auc.dk/∼normark/laml/, 1999.

[16] Kurt Nørmark. Using Lisp as a markup
language—the LAML approach. 1999. To be pre-
sented at the European Lisp User Group Meet-
ing, Amsterdam. Available via http://www.cs.-
auc.dk/∼normark/laml/.

[17] J. Rees and W. Clinger. Revised3 report on the
algorithmic language Scheme. Sigplan Notices,
21(11), 1986.

[18] Gerd Szwillus and Lisa Neal. Structure-Based ed-
itors and environments. Academic Press, 1996.

[19] John Zuckerman. The internet
Scheme repository. http://www.cs.indiana.edu/-
scheme-repository/home.html.

